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Archimedes’s approximation of π 

The constant S  is defined to be the circumference of a circle divided by its diameter.  

The value of S  has been determined to an accuracy of more than twelve trillion 
decimal places. To the non-mathematician this may appear strange since it is not possible to 
measure the circumference and diameter of a circle to that degree of accuracy; this article 5 
explains how one of the greatest mathematicians of all time found the value of S  to a high 
degree of accuracy without requiring any physical measurement. 

Archimedes (287-212 BC) lived in Syracuse, Sicily. He developed many branches of 
mathematics, including calculus, in which he devised methods for finding areas under 
parabolas nearly 2000 years before Newton and Leibniz, and mechanics, in which he found 10 
the centres of gravity of various plane figures and solids and devised a method for calculating 
the weight of a body immersed in a liquid.  

Whilst absorbed in a mathematical problem, Archimedes was killed by a soldier during the 
capture of Syracuse by the Romans.  

Archimedes’s method for determining the value of S  is described below. 15 

Fig. C1 shows a circle with unit radius and two regular hexagons. 

The smaller regular hexagon has its vertices on the circle; it is called an inscribed polygon. Its 
perimeter is 6. 

The larger regular hexagon has the midpoints of its edges on the circle; it is called an escribed 
polygon. Its perimeter is 4 3 . 20 

The circumference of the circle is greater than the perimeter, ABCDEF, of the smaller 
hexagon but less than the perimeter, A'B'C'D'E'F' , of the larger hexagon.  

Fig. C1 
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Dividing the perimeters by the diameter of the circle gives lower and upper bounds for         
S  of 3 and 2 3 , so that  3 2 3S� � . 

To find tighter bounds, Archimedes repeatedly doubled the number of edges in the two 25 
regular polygons, from 6 to 12, 24, 48 and finally 96. The process of doubling the number of 
edges is described below.  

Fig. C2 shows two adjacent vertices, P and Q, of a regular polygon inscribed in a circle with 
unit radius and centre O. PQ has length a. M is the midpoint of PQ. OM is extended to meet 
the circle at R. MR has length h. PR and RQ are adjacent edges of a regular polygon which 30 
has twice as many edges as the polygon which has PQ as an edge.  PR has length b.    

Applying Pythagoras’ Theorem  

x to triangle OMP gives � �
2

21 1
4
a h � � ,  

x to triangle PMR gives 
2

2 2

4
ab h � . 

For the inscribed regular hexagon, 1a  . Substituting 1a  in the equations above gives 35 
2 3

2
h �
  and 2 3b  � . This can be written in the equivalent form  6 2

2
b �
  . 

Therefore a regular polygon with 12 edges inscribed in a unit circle has edge length 6 2
2
� .  

Archimedes repeated this process to find the edge lengths of inscribed regular polygons with 
24, 48 and 96 edges. He then used a similar technique for escribed regular polygons. 

The inscribed and escribed regular polygons with 96 edges provide bounds for S  which we 40 
now write, using decimal notation, as  
3.14103... 3.14271...S� �  . 
 

Fig. C2 
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